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On this note we’ll give a detailed description of Zennet’s pricing algorithm.
The purpose of the algorithm is to fairly price computational resources con-
sumption, focusing only on massive distributed computationaljobs.

An intuitive approach is to measure accumulated procfs variables. But such
variables are definitely illusive:

1. Variables are correlated: in real life, you cannot use only CPU or only
RAM and so on.

2. Variables might often show same values, but they have totally different
economical value on different machines: some CPU instruction set is much
more efficient than of CPU from another model, and one can think of many
other examples.

3. Both as a standalone statement and as consequences from the above, the
true principal variables we’re looking for, measuring the “real” computa-
tional resources consumption, are unknown.

Big troubles, but, procfs is all we have.
Assume that there exists n such physical unknown principal uncorrelated

variables (abbrev. by UVs, “Unknown Variables”). Assume the existence of a
function f : X → R

n which maps a computer program x ∈ X to a vector which
represents the accumulated consumption values of all n UVs.

Now, if the UVs were known, we would set a price for each one of them. Call
this vector of prices p ∈ R

n. The total reward to be paid for a program x is
therefore

s = pT f (x) (1)

We now make the main assumption: we claim that the procfs variables are
the result of a linear projection acting on the UVs. The rationale is that we do
seek accumulated (hence additive) variables, but uncorrelated (=orthogonal).
Denoting by v : X → R

m a function that given a program returns a vector of
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m accumulated procfs variables values as its components, we therefore assume
the existence of a matrix M such that

f (x) = Mv (x) (2)

Plugging into (1) we get

s = pTMv (x) (3)

Take N programs {xk}k∈[N ] which altogether use all attached hardware in
different forms, in which the user has set the price of each program as a whole,
without dividing it among the UVs (or even set only one number for full PC
usage, if this number is t then s = t1 on the upcoming notation). So we have
N pairs of the form (xk, sk) where sk is the desired price for program xk. Let
s be a vector with sk∈[N ] as components, and V be a matrix with rows v (xk).
Our equation now reads:

s = pTMV (4)

our unknown is the vector pTM which can be optimally estimated by the
Moore-Penrose pseudoinverse:
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We do not know the value of n, so we just pick reasonably large N . In addition, if
Singular Value Decomposition is used, the psuedoinverse of V can be calculated
without dependence on n > N etc.

Note that this pricing model is adequate for massively distributed appli-
cations only: say that a pending IO read was blocking for a long time. On
singleton machine usage, this matters to both publisher and provider, and will
break the linearity assumption. But when the big job is distributed into count-
less small jobs, we don’t care if one host made 1000 small jobs per second, while
another host made only one every second. This root assumption is therefore
vital for the acceptability of the solution.

Those xn are called, on the Zennet’s framework, the Canonical Benchmarks.
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